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The approach developed in the present paper is applied for the coupled-vibration

analysis of a cantilever cylindrical shell partially submerged in a fluid with a continuous,

simply connected and non-convex domain. The shell is partially and concentrically

submerged in a rigid cylindrical container partially filled by a fluid which is assumed to

terms of eigenfunction expansions using the collocation method. The interaction

between the fluid and the structure takes into account by using the compatibility

requirement along the wet surface of the shell and the Rayleigh–Ritz method is used to

calculate natural frequencies and modes of the coupled system. The validity of the

developed theoretical method is verified by comparing the results with those obtained

from the finite element analysis. Furthermore, the effects of submergence depth, radial

distance between shell and container, and circumferential wavenumbers on the natural

frequencies and modes of the coupled system are investigated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An important class of complex fluid–structure interaction problems involves the introduction of an internal body inside
a fluid where the internal body may be partially or completely submerged in the fluid. Therefore, the fluid domain is non-
convex, continuous and simply connected. Evans and McIver [1] explored the effect of introducing a vertical baffle into a
rectangular container on fluid frequencies. They used the appropriate eigenfunction expansions and solved the resulting
integral equation for the fluid on both sides of the baffle. Watson and Evans [2] extended this technique for a number of
similar problems. Gavirlyuk et al. [3] developed fundamental solutions of the linearized problem on the fluid sloshing in a
vertical cylindrical container having a thin rigid-ring horizontal baffle. A pressure-based finite element technique has been
developed to analyze the slosh dynamics of a partially filled rigid container with bottom-mounted submerged components
by Mitra and Sinhamahapatra [4]. Maleki and Ziyaeifar [5] investigated the effects of baffles (horizontal ring and vertical
blade baffles) in increasing the hydrodynamic damping of sloshing in circular cylindrical storage tanks. All of these
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Nomenclature

a container radius
b internal body radius
Bm eigenvalue of sth mode of a clamped-free

beam
E Young’s modulus
h internal body length
H fluid level
Ks stiffness matrix of the shell
L container length
ML mass matrix of the fluid
Ms mass matrix of the shell
r, y, x longitudinal, circumferential, radial coordi-

nates
u(x, y) axial displacement of the shell

v(x, y) circumferential displacement of the shell
w(x, y) radial displacement of the shell

Greek letters

ls (2s�1)p/2H

n Poison’s ratio
rL mass density of the fluid
rs mass density of the shell
~jðr,y,x,tÞ velocity potential of the fluid
jIðr,y,xÞ deformation potential in region (I)
jIIðr,y,xÞ deformation potential in region (II)
cmðxÞ beam eigenfunction associated with eigenva-

lue bm

o circular frequency
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researchers obtained some remarkable results for the fluid sloshing in a vertical cylindrical container without considering
the fluid–structure interactions.

Cho et al. [6] presented the fluid–structure interaction analysis of fluid-storage containers with baffle, a disc-type baffle
with an inner hole, by the structural-acoustic finite element formulation. Ergin and Ugurlu [7] investigated vibration of
cantilever plates partially submerged in a fluid using the boundary element method (BEM). Biswal et al. [8] developed a
finite element code and investigated the influence of a baffle, a thin annular circular plate, on the dynamic response of a
partially fluid-filled cylindrical tank. Esmailzadeh et al. [9] numerically studied dynamic behavior of a 3-D thin flexible
structure in an inviscid incompressible stationary fluid. Kerboua et al. [10] developed a numerical approach to consider
vibration of rectangular plates totally submerged in a fluid or floating on its free surface.

The problems investigated above can be divided into two major categories. The first one includes the sloshing problems
in which the structure and the internal body are assumed to be rigid. In the second category, the interaction between fluid
and structure or fluid and internal body are considered by using numerical techniques. In the present paper, the analytical
method presented by Evans and McIver [1] for exploring the fluid frequencies without considering the fluid–structure
interactions is extended to construct a new analytical method for investigating the problems including the interaction
between the fluid and the internal body. For brevity, the project restricts itself to investigate the coupled-vibration of a
cantilever cylindrical shell (internal body) partially submerged in a rigid cylindrical container with finite diameter. The
submerged cylindrical shell is representative of certain key components of complex structures used in various industries.

In the present paper, attention is focused on the bulging modes of the submerged cylindrical shell. It can be noted that
the coupled system has two groups of modes: sloshing and bulging ones [11]. Sloshing modes are caused by the oscillation
of the fluid free surface, whereas bulging modes are related to vibrations of the shell. However, the effects of the free
surface waves are neglected in the present study. In fact, it is well known that the effect of the free surface waves is low on
bulging modes for structures that are not extremely flexible [12].

Generally, the cylindrical shell is a thin-walled and open-ended structure and the Rayleigh–Ritz method is used to
derive the characteristic equation of the cantilever cylindrical shell based on Love’s thin shell theory. Moreover, the
compatibility requirement is applied for the fluid–structure interaction along the contact surface between the shell and the
fluid. The bottom plate of the container is flat and rigid, and the fluid is assumed to be incompressible and inviscid.
The velocity potential is formulated in terms of eigenfunction expansions for two distinct fluid regions that can be matched
across the common vertical boundary (artificial vertical boundary). The resulting equations can be solved by using
the collocation method. The present theoretical method for the submerged cylindrical shell is validated by comparing the
results with those obtained from the finite element analysis. The effects of the submergence depth, circumferential
wavenumbers, axial and radial distances between the shell and the container on the dynamic behavior of the
coupled-system are also investigated.
2. Mathematical model

Consider a cantilever cylindrical shell of length h, radius b, and thickness t as shown in Fig. 1. The shell is thin-walled
and open-ended, and is assumed to be made of an elastic material with Young’s modulus E, Poisson’s ratio n, and mass
density rs. The bottom edge of the shell which is partially submerged in a partially fluid-filled cylindrical container is free.
The radial, circumferential and axial coordinates are denoted by r, y and x, respectively. The container is a rigid structure of
length L and radius a, and is filled to a height H with an inviscid and incompressible fluid of mass density rL.
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Fig. 1. A concentrically submerged cylindrical shell in a partially fluid-filled rigid container.
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2.1. The cylindrical shell

The potential energy for the thin isotropic cylindrical shell is given by [13–15]

US ¼
1

2

Z Z
Om

As e2
xþ2nexeyþe2

yþ
1�n

2
e2

xy

� �
þDs k2

xþ2nkxkyþk2
yþ

1�n
2

k2
xy

� �� �
b dx dy (1)

where coefficients As and Ds are stretching and bending stiffness of the shell, respectively, and Om is the shell middle
surface.

As ¼
Et

1�n2
,Ds ¼

Et3

12ð1�n2Þ
(2)

From Love’s thin shell theory, the strain and curvature ei, ki, i¼ x,y,xy in the middle shell surface are as follows for n40
[13–15]

ex ¼
qu

qx
,ey ¼

1

b

qv

qy
þw
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,exy ¼

qu

bqy
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qv
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,

kx ¼�
q2w

qx2
,ky ¼�

1
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q2w

qy2
�
qv

qy

 !
,kxy ¼�

1

b
2
q2w

qxqy
�
qv

qx

 !
(3)

where u, v, and w are axial, circumferential and radial displacements of the shell on the shell middle surface, respectively.
For the axisymmetric case (n=0), all derivatives with respect to y vanish.

The reference kinetic energy of the shell is given by [13–15]

T�S ¼
1

2
rst

Z Z
Om

½ðuðx,yÞ2þvðx,yÞ2þwðx,yÞ2�b dx dy (4)

The Rayleigh–Ritz method is applied to find natural modes of the cylindrical shell, and the time variation is assumed to
be harmonic. The admissible displacement functions for the free vibration of the cylindrical shell with any boundary
condition can be written as [15,16]

uðx,yÞ ¼
X1

m ¼ 1

Umn
1

am

qCmðxÞ

qx
cosðnyÞ,am ¼

bm

h

vðx,yÞ ¼
X1

m ¼ 1

VmnCmðxÞsinðnyÞ

wðx,yÞ ¼
X1

m ¼ 1

WmnCmðxÞcosðnyÞ (5)
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where Umn, Vmn and Wmn are the Ritz unknown coefficients and m and n are axial half-wave and circumferential
wavenumbers. Cm(x) is used as the admissible function that is the in vacuo beam function, satisfying the imposed
boundary conditions. It has been shown by Blevins [17] that the choice of the beam functions as the test functions is
appropriate provided that the ratio of the shell length to its radius is greater than eight.

In the present article, the cylindrical shell with clamped-free boundary conditions (clamped at x=L and free at x=L�h)
is considered. Therefore, Cm(x) is given by

CmðxÞ ¼ cosh
bm

h
ðL�xÞ

� �
�cos

bm

h
ðL�xÞ

� �� �
�sm sinh

bm

h
ðL�xÞ

� �
�sin

bm

h
ðL�xÞ

� �� �

sm ¼
coshðbmÞþcosðbmÞ

sinhðbmÞþsinðbmÞ
(6)

where bm are solutions of the following equation:

coshðbmÞcosðbmÞþ1¼ 0 (7)

2.2. Dynamic behavior of the fluid–structure interaction

The usual linearized theory of water wave permits the introduction of a velocity potential for the fluid motion.
Assuming simple harmonic motion of circular frequency o, the velocity potential can be expressed as

~jðr,y,x,tÞ ¼ iojðr,y,xÞeiot ,i2
¼�1 (8)

The fluid domain is continuous, simply connected and non-convex. In order to compute the time-independent velocity
potential, jðr,y,xÞ, the fluid domain can be divided into two parts (I) and (II) as shown in Fig. 2, [1,2].

I¼ fðr,y,xÞ : 0rxrH,robg and II¼ fðr,y,xÞ : 0rxrH,boroag (9)

The fluid deformation potential in two regions is assumed to be of the form below [1,2,18]:

jI ¼
X1

m ¼ 1

WmnjI
mn, jII ¼

X1
m ¼ 1

WmnjII
mn (10)

where jI and jII are time-independent velocity potentials in regions (I) and (II), respectively, and jI
mn and jII

mn are
eigenfunctions.

It will be convenient to define

g¼ fðr,y,xÞ : r¼ b,0oyo2p,xoL�hg, g0 ¼ fðr,y,xÞ : r¼ b,0oyo2p,L�hoxoHg (11)

where g is boundary between two fluid regions and g0 is contact boundary between the fluid and the cylindrical shell. The
fluid along the boundary g0 is in contact with inner and outer of the lateral cylindrical shell for regions (I) and (II),
respectively.

We consider region (I) to find functionjIðr,y,xÞ. This function satisfies conditions (12)–(15) in that region and the
condition jI=0 on r=0. For an inviscid and incompressible fluid with an irrotational movement due to the structural
vibration (quiescent fluid), the potential jI satisfies the Laplace equation, so

r
2jI ¼ 0 (12)
Fig. 2. Geometry of the submerged cylindrical shell in the partially fluid-filled rigid container and coordinate systems.
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For stationary fluid, the radial velocities of fluid and cylindrical shell must be equal along g0. This is the contact condition
when there is no cavitation along the interface [19]. Therefore

qjI

qr
¼w, r¼ b, L�hoxoH (13)

When the fluid is in contact with the rigid bottom of the container, the fluid velocity in the vertical direction should be
zero,

qjI

qx
¼ 0,x¼ 0 (14)

q ~jI

qt
¼ 0) jI ¼ 0, x¼H (15)

where ~jI is the velocity potential in region (I). This condition states that the pressure on the free surface in region (I) is
zero.

In the inner fluid region (I), using the method of separation of variables gives

jI
mn ¼ cosðnyÞ

X1
s ¼ 1

AmnscosðlsxÞInðlsrÞ, ls ¼ ð2s�1Þ
p

2H
,s¼ 1,2,3, . . . (16)

which satisfies conditions (12), (14) and (15), and also vanishes on r=0 as required. In is the modified Bessel function of the
first kind of order n.

Now, we consider region (II) and seek function jIIðr,y,xÞ, satisfying conditions (17)–(21) in that region.
For an inviscid, incompressible fluid with an irrotational movement due to the structural vibration (quiescent fluid), the

potential jII satisfies the Laplace equation, so

r
2jII ¼ 0 (17)

The radial velocities of the fluid and the cylindrical shell must be equal along g0. This is the contact condition between an
impermeable shell and a fluid when there is no cavitation along the interface [19]. Therefore

qjII

qr
¼w, r¼ b, L�hoxoH (18)

For the fluid in contact with the rigid bottom of the container, the fluid velocity in the vertical direction should be zero, so

qjII

qx
¼ 0, x¼ 0 (19)

q ~jII

qt
¼ 0) jII ¼ 0, x¼H (20)

where ~jII is velocity potential in region (II). It means that the pressure on the free surface in region (II) is zero. For the fluid
in contact with the lateral rigid wall of the container, the fluid velocity in the radial direction is zero, so

qjII

qr
¼ 0 r¼ a, 0oxoH (21)

In the outer fluid region (II), the method of separation of variables gives

jII
mn ¼ cosðnyÞ

X1
s ¼ 1

BmnscosðlsxÞ InðlsrÞ�
I0nðlsaÞ

K 0nðlsaÞ
KnðlsrÞ

� �
,ls ¼ ð2s�1Þ

p
2H

,s¼ 1,2,3, . . . (22)

where Kn is the modified Bessel function of the second kind of order n, and I0n and K 0n indicate the derivatives of In and Kn,
with respect to r. jII

mn satisfies the boundary conditions (17), (19)–(21). Amns and Bmns are unknown coefficients to be
determined by the matching process, depending on the integers m, n and s. It is also necessary to ensure that the potentials
and velocities of fluid are continuous along g, and the conditions (13) and (18) are satisfied along g0. These conditions are
presented in Eqs. (23), (24a) and (24b) as follows:

qjI

qr
ðr¼ bÞ ¼

qjII

qr
ðr¼ bÞ on g

o on g0

8<
: (23)

Eq. (23) indicates that the radial velocity of the fluid is continuous along g. The radial velocity of the fluid is equal to the
radial velocity of the cylindrical shell in region (I) and along g0.

The continuity condition for the velocity potentials along boundary g requires that

jII ¼jI on g (24a)
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The radial velocity of the fluid is equal to the radial velocity of the cylindrical shell along g0 and in region (II), so

qjII

qr
ðr¼ bÞ ¼w on g0 (24b)

Eq. (23) must be satisfied for all values 0rxrH (on boundary, g+g0). If one applies the collocation method on this
equation, one obtains

QAmn ¼RBmnþS

Q js ¼ I0nðlsbÞcosðlsxjÞ

Rjs ¼ I0nðlsbÞ�
I0nðlsaÞ

K 0nðlsaÞ
K 0nðlsbÞ

� �
cosðlsxjÞ on g

Sj ¼ 0

8>>>><
>>>>:

Q js ¼ I0nðlsbÞcosðlsxjÞ

Rjs ¼ 0 on g0

Sj ¼cmðxjÞ

8><
>:

Amn ¼

Amn1

^

Amns

8><
>:

9>=
>;, Bmn ¼

Bmn1

^

Bmns

8><
>:

9>=
>; xj ¼ ðj�1Þ

H

N
, j¼ 1, . . . ,N (25)

where xj is selected as points used in the collocation method. Eqs. (24a) and (24b) must be satisfied for all values 0rxrH

(on boundary, g+g0). If one applies the collocation method on these equations, one obtains

TBmn ¼OAmnþP

Tjs ¼ InðlsbÞ�
I0nðlsaÞ

K 0nðlsaÞ
KnðlsbÞ

� �
cosðlsxjÞ

Ojs ¼ InðlsbÞcosðlsxjÞ on g
Pj ¼ 0

8>>>><
>>>>:

Tjs ¼ I0nðlsbÞ�
I0nðlsaÞ

K 0nðlsaÞ
K 0nðlsbÞ

� �
cosðlsxjÞ

Ojs ¼ 0 on g0

Pj ¼CmðxjÞ

8>>><
>>>:

Amn ¼

Amn1

^

Amns

8><
>:

9>=
>;, Bmn ¼

Bmn1

^

Bmns

8><
>:

9>=
>; xj ¼ ðj�1Þ

H

N
, j¼ 1, . . . ,N (26)

where xj is selected as points used in the collocation method. The coefficients Amns and Bmns are computed by solving the
following equations:

QAmn ¼RBmnþS

TAmn ¼OBmnþP

(
(27)

The Rayleigh–Ritz method is used to calculate the natural frequencies and mode shapes. It is useful to introduce the
Rayleigh quotient [20,21] for the system considered, which is

o2 ¼
US

T�S þT�L
(28)

where US and T�S are defined in Eqs. (1) and (4), respectively. The only term that remains to be computed in Eq. (28) is the
simplified reference kinetic energy of the fluid, T�L , which, by using Green’s theorem [18,19], is

T�L ¼
1

2
rL

Z Z
O
jII qjII

qz
b dx dyþ

Z Z
O1

jI qjI

qz
b dx dy (29)

where O and O1 are the outer and inner surface of the shell in contact with the fluid, respectively, and z is normal
direction at any point on the boundary surface of the fluid domain (O[O1) pointing outwards, (z=r on O1; z=r on O). By
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substituting Eqs. (12) and (18) in Eq. (29), we can write

T�L ¼
1

2
rL

Z 2p

0

Z H

L�h
ð�jIIþjIÞr ¼ bwb dx dy (30)

2.3. The eigenvalue problem

For the numerical calculation of natural frequencies and Ritz unknown coefficients, only M terms in the expansion of u,
v and w, Eq. (5), and N in the expansion of jI

mn and jII
mn, Eqs. (16) and (22) are considered, where M and N are chosen large

enough to give the required accuracy. Therefore, all the energies are given by finite summations. It is convenient to
introduce a vectorial notation. The vector q of the parameters of the Ritz expansion is defined by

q¼

U

V

W

8><
>:

9>=
>;,U¼

U1n

^

UMn

8><
>:

9>=
>;,V¼

V1n

^

VMn

8><
>:

9>=
>;,W¼

W1n

^

WMn

8><
>:

9>=
>; (31)

The maximum potential energy of the shell, Eq. (1), becomes

US ¼
1
2WnqT Ksq (32)

where Wn ¼ p for n40 and Wn ¼ 2p for n=0, the partitioned matrix Ks is

Ks
¼

K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75 (33)

where the elements of the submatrices Kkl, (k,l=1,2,3) are given by

K11
ij ¼

As

aiaj
b

Z L

L�h

q2Ci

qx2

q2Cj

qx2
dxþð1�nÞ n

2

2b

Z L

L�h

qCi

qx

qCj

qx
dx

" #
,i,j¼ 1, . . . ,M

K12
ij ¼

Asn

2ai
2n
Z L

L�h

q2Ci

qx2
cj dx�ð1�nÞ

Z L

L�h

qCi

qx

qCj

qx
dx

" #

K13
ij ¼

Asn
ai

Z L

L�h

q2Ci

qx2
cj dx

K22
ij ¼ Asb

1�n
2
þDs

1�n
2b

� �Z L

L�h

qCi

qx

qCj

qx
dxþ Ds

n2

b3
þAs

n2

b

� �Z L

L�h
CiCj dx

K23
ij ¼ As

n

b
þDs

n3

b3

� �Z L

L�h
CiCj dxþDs n

1�n
b

Z L

L�h

qCi

qx

qCj

qx
dx�

n
b

Z L

L�h

q2Ci

qx
cj dx

 !" #

K33
ij ¼

As

b

Z L

L�h
CiCj dxþDs b

Z L

L�h

q2Ci

qx2

q2Cj

qx2
dx�2nn2

b

Z L

L�h

q2Ci

qx2
cj dxþ

n4

b3

Z L

L�h
CiCj dxþ2n2 1�n

b

Z L

L�h

qCi

qx

qCj

qx
dx

" #

K21
ij ¼K12

ji ,K31
ij ¼K13

ji ,K32
ij ¼K23

ji (34)

The reference kinetic energy of the shell, Eq. (4), may be written as

T�S ¼
1
2WnqTMsq (35)

where

Ms
¼

M11 0 0

0 M22 0

0 0 M33

2
64

3
75 (36)

where the elements of the submatrices Mkk,ðk¼ 1,2,3Þ are given by

M11
ij ¼ brst

Z L

L�h

1

aiaj

qCi

qx

qCj

qx
dx

M22
ij ¼M33

ij ¼ brst

Z L

L�h
CiðxÞCjðxÞdx,i,j¼ 1 . . .M (37)
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The simplified reference kinetic energy of the fluid, Eq. (30), can be written as

T�L ¼
1
2WnqTMLq (38)

where Wn ¼ p for n40 and Wn ¼ 2p for n=0, which

ML
¼

0 0 0

0 0 0

0 0 MF

2
64

3
75 (39)

The elements of submatrix MF can be written as

MF
ij ¼ brL

XN

s ¼ 1

Z H

L�h
cosðlsxÞCjðxÞdx� �BinsðInðlsbÞ�

I0nðlsaÞ

K 0nðlsaÞ
KnðlsbÞÞþAinsInðlsbÞ

� �
,i,j¼ 1 . . .M (40)

Substituting Eqs. (32), (35) and (38) into the Rayleigh quotient, Eq. (28), and then minimizing with respect to the
coefficients qi, we obtain

Ksq�o2ðMs
þML

Þq¼ 0 (41)

where o is the circular frequency of the submerged cylindrical shell. Eq. (41) gives a linear eigenvalue problem for a real,
non-symmetric matrix.

ðQ�o2IÞq¼ 0,Q ¼ ðMs
þML

Þ
�1Ks (42)

For the axisymetric case, n=0, the torsional mode decouples and rendering the matrix Q given in Eq. (42) block diagonal.
Thus, it can be dealt with independent of the radial and longitudinal motions. These results in two independent matrix
equations: one involving a M�M coefficient matrix for the torsion problem and the second involving a 2M�2M coefficient
matrix corresponding to the other modes. The product of the determinants of these two coefficient matrices gives the
frequency equation for the axisymmetric modes.

3. Results and discussions

Based on the preceding analysis, the eigenvalue problem, Eq. (41), is solved to find the natural frequencies and mode
shapes of a submerged cylindrical shell. To check the validity and accuracy of the proposed method, the comparisons are
made with FEM results. In the finite element analysis, the 2-D axisymmetric model is constructed with the axisymmetric
structural shell element for the elastic structure and the axisymmetric fluid element or the fluid region. The shell element
is defined by two nodes having four degrees of freedom at each node: three translations in each direction and one rotation.
The geometry, node locations, and the coordinate systems for this element are shown in Fig. 3. The fluid element is defined
by four nodes having three degrees of freedom at each node: three translations in each direction [22]. The geometry, node
locations, and the coordinate systems for this element are shown in Fig. 4. The radial velocities of the fluid nodes along the
wet surface of the cylindrical shell coincide with the corresponding velocities of the cylindrical shell. The radial velocities
of the fluid nodes along the wet surface of the container are zero. In the present paper, the effects of the free surface waves
are neglected. Consequently, the time-independent velocity potential of the fluid nodes on the free surface in two regions
(I, II) is zero. In the present finite element model, the shell is divided into 90 2-D axisymmetric structural shell elements of
the same size, whereas the fluid region consists of 2430 fluid elements as illustrated in Fig. 5.
Fig. 3. Shell element: geometry, node locations, and coordinate system.
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The following material properties are used: the shell is made of steel with Young’s modulus E=206 GPa, Poisson’s ratio
n=0.3 and mass density rs=7850 kg/m3; the fluid is water with mass density rL=1000 kg/m3. The rigid container is
partially filled to H=0.67L and its dimensions are a=1.1b with length L=6b for case 1 and a=1.3b with same length for
case 2. The cylindrical shell dimensions are b=0.1 m, h=0.75L, and t=0.002 m.
3.1. Convergence and validity study

To check the convergence of the developed method, a cylindrical shell with clamped-free boundary
conditions submerged in a partially fluid-filled cylindrical container (case 1) is analyzed. Both Tables 1 and 2 present
the convergence of the developed method for different number of terms in the series expansions. It is seen that 10 shell
modes (M=10) in the Ritz expansion, and 25 terms (N=25) in the expansion of jI

mn and jII
mn are enough to give a good

accuracy.
Fig. 4. Fluid element: geometry, node locations, and coordinate system.

Fig. 5. Finite element model for a cylindrical shell submerged in a cylindrical rigid container.
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To validate the developed theoretical method, the results for the partially submerged cylindrical shell in cases 1 and 2
are compared with those obtained from the finite element analysis, in Table 3. The results are in good agreement, whereas
the largest discrepancy is o2.5 percent and 4 percent for cases 1 and 2, respectively. As it is mentioned in Section 2, using
the beam functions is satisfactory if (h/b) is greater than eight. This ratio is 4.5 for the present particular case and
nevertheless, the results obtained from the mathematical model are in good agreement with those of the numerical ones. It
should be noted that in general, the use of beam functions represents an approximation which is expected to break-down
for shells with smaller length-to-radius ratios. Moreover, a formulation is prepared for considering the first uncoupled
acoustic frequencies of the fluid system. It should be noted that the solution of the problem is obtained by an iterative
algorithm. It is seen that the assumption of incompressibility may have some errors for frequencies larger than 1000 Hz
and the effects of compressibility cannot be ignored for these frequencies.
Table 1
Convergence study of natural frequencies (Hz), effect of the series terms M with N=25.

Mode no. M

n m 4 6 8 10 12

2 1 95.13 94.69 94.49 94.36 94.30

2 645.58 629.76 628.03 626.20 625.98

3 1 143.34 143.24 143.20 143.16 143.14

2 427.27 421.63 420.96 420.20 420.06

4 1 299.03 299.00 298.96 298.95 298.95

2 459.14 455.60 455.37 455.02 454.96

5 1 538.80 538.78 538.69 538.68 538.66

2 659.48 653.28 652.91 652.52 652.36

6 1 865.24 865.23 865.09 865.08 865.07

2 972.41 959.19 958.65 957.99 957.89

Table 2
Convergence study of natural frequencies (Hz), effect of the series terms N with M=10.

Mode no. N

n m 10 15 19 22 25 28

2 1 88.06 90.79 94.23 94.30 94.36 94.33

2 590.07 603.88 626.13 626.12 626.20 626.26

3 1 137.40 139.64 143.01 143.09 143.16 143.22

2 406.61 410.10 420.28 420.19 420.20 420.26

4 1 291.55 294.08 298.64 298.80 298.95 299.08

2 447.29 447.63 455.01 454.97 455.02 455.01

5 1 531.23 533.31 538.19 538.45 538.68 538.76

2 645.00 644.33 652.01 652.24 652.52 652.80

6 1 859.13 860.17 864.40 864.77 865.08 865.15

2 951.31 949.49 956.81 657.40 957.99 958.31

Table 3
Coupled natural frequencies (Hz) of the partially submerged cylindrical shell.

Mode no. m n Case 1 (a=0.11 m) Case 2 (a=0.13 m)

FEM (ANSYS) This study FEM (ANSYS) This study

1st 1 2 94.03 94.36 125.81 126.53

2nd 1 3 140.23 143.16 177.33 181.42

3rd 1 1 196.21 200.48 274.40 282.65

4th 1 4 291.54 298.95 351.56 360.95

5th 2 3 415.49 420.20 499.41 506.98

6th 2 4 444.55 455.02 520.07 532.13

7th 1 5 528.32 538.68 612.27 625.38

8th 2 5 640.48 652.52 735.89 744.35

9th 2 2 618.54 626.20 770.69 783.76

10th 1 6 852.00 865.08 959.29 972.88
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3.2. Effect of the container radius

In order to study the effect of the radial distance between the shell and the container on the dynamic characteristics of
the coupled system, the radius ratio is defined as

Rab ¼
a

b

� �
, 1oRabo1 (43)

Moreover, a normalized natural frequency is defined as the coupled natural frequency divided by the natural frequency of
the submerged shell with infinite radius ratio for the specific corresponding mode.

Fig. 6 shows the normalized natural frequencies of the submerged cylindrical shell as a function of radius ratio Rab,
for various axial half-wave and circumferential wavenumbers. As it can be observed from Fig. 6, the normalized natural
frequencies increase with increasing radius ratio. Fig. 6-a illustrates that the natural frequency of the shell can be
reduced by about 60 percent for n=1, m=1, and Rab�1. This reduction is due to interaction between the container and
the submerged shell through the fluid. The natural frequencies of the shell rapidly converge to those obtained for the
shell submerged in an unbounded liquid in the radial direction. As can be seen from Fig. 6, it occurs about radius ratio 2.5.
In fact, the container has a small effect on the vibrating shell when its distance to the internal body is large enough.
The same conclusion has also been reported in some references [24,25]. As can be seen from Fig. 6, the variations of
the normalized frequencies of the submerged shell with radius ratio also depend on the axial half-wave and
circumferential wavenumbers. In fact, the normalized natural frequencies increase with increasing the circumferential
mode number. If the radius ratio approaches unity, the normalized natural frequencies decrease dramatically since the
narrow annular gap, the distance between the submerged shell and the container, produces a great hydrodynamic mass
due to a lengthened moving length of the fluid. That is to say, the narrow annular gap works as a one directional channel
carrying fluid during vibration, which produces an increased added mass, and eventually reduces the natural frequencies of
the shell.
Fig. 6. Normalized natural frequencies of the submerged shell as a function of radius ratio (Rab): (a) first axial half-wave (m=1); (b) second axial half-

wave (m=2); (c) third axial half-wave (m=3); (d) fourth axial half-wave (m=4) ( , n=1; , n=2; , n=3; , n=4; ,

n=5; , n=6).
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Fig. 7. Effect of submerged ratio on natural frequencies of the submerged shell: (a) first axial half-wave, Rab =1.1; (b) first axial half-wave, Rab=4; (c)

second axial half-wave, Rab =1.1; (d) second axial half-wave, Rab=4; (e) third axial half-wave, Rab=1.1; (f) third axial half-wave, Rab=4; (g) fourth axial

half-wave, Rab=1.1; (h) fourth axial half-wave, Rab=4 ( , n=1; , n=2; , n=3; , n=4; , n=5; , n=6).
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3.3. Effect of the submergence depth

The submerged ratio is defined as

Hinterface ¼
h�ðL�HÞ

h
, 0rHinterfacer1 (44)

In addition, a normalized natural frequency is defined as the wet natural frequency divided by the in vacuo one of the shell
for the specific corresponding mode.
Fig. 8. Normalized natural frequency of the submerged shell with respect to circumferential wavenumber n, for m=1.

Fig. 9. Normalized natural frequency of the submerged shell with respect to circumferential wavenumber n, for m=2.
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Fig. 7 shows the normalized natural frequencies of the submerged cylindrical shell as a function of submerged ratio,
Hinterface. In fact, with increasing the submerged ration, the hydrodynamic mass increases which causes the natural
frequencies to decrease. Although the figure shows similar trend for both radius ratios 1.1 and 4, the effect of the
submerged ratio on the natural frequencies of the coupled system with radius ratio 4 is less than that those of with radius
ratio 1.1. The effect of the submerged ratio on the frequencies of the submerged cylindrical shell is stronger for modes with
smaller axial half-wave and circumferential wavenumbers n, m.
Fig. 10. Normalized natural frequency of the submerged shell with respect to circumferential wavenumber n, for m=3.

Fig. 11. Normalized natural frequencies of the submerged shell with respect to circumferential wavenumber n, for m=4.
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3.4. Effect of the circumferential wavenumber n

The natural frequencies of the submerged cylindrical shell for different circumferential wavenumbers, n, are shown in
Figs. 8–11. They are also plotted for different values of m=1–4 and Rab=1.1, 1.2, 1.3, 1.5, and 2.0. As it can be seen from
these figures, the minimum natural frequency for each radius ratio occurs at n=m+1.
Fig. 12. First three modes having the circumferential wavenumber n=2 in radial w, circumferential v and axial u directions.

Fig. 13. First three modes having the circumferential wavenumber n=3 in radial w, circumferential v and axial u directions.
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3.5. Mode shapes of vibration

The first three mode shapes of the submerged cylindrical shell having the circumferential wavenumber n=2 in radial
(w), circumferential (v) and axial (u) direction are given in Fig. 12. Mode shapes are plotted for shell section defined by y=0
and y=p. Obviously, the mode shapes are symmetric in this case, n=2. The first three mode shapes of the submerged
cylindrical shell having n=3 in radial (w), circumferential (v) and axial (u) direction are presented in Fig. 13. As seen in
Figs. 12 and 13, the shell displacements in radial direction (w) are larger than shell displacements in other directions
(axial and circumferential direction (u, v)). Moreover, the mode shapes for the submerged shell are approximately similar
to those for the shell vibrating in air.

The mode shapes of the cylindrical shell for different submerged ratios (Hinterface) and for n=2, 3 are shown in Figs. 14
and 15, respectively. These mode shapes represent the radial (w) displacement of the shell. As can be observed from these
Fig. 14. The variation of the mode shape with variation of submerged ratio (Hinterface) for circumferential mode number n=2: ——, in water; � � � � � � � � � ,

in air.

Fig. 15. The variation of the mode shape with variation of submerged ratio (Hinterface) for circumferential mode number n=3; ——, in water; � � � � � � � � � ,

in air.
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figures, the location of the nodal points (the points that are immobile during vibration) changes with the value of
submerged ratio. The mode shapes in Figs. 12–15 are normalized with respect to their absolute maximum displacements.

4. Conclusions

The coupled vibration of a cantilever cylindrical shell partially and concentrically submerged in a partially fluid-filled
rigid cylindrical container was considered. The developed method captures the analytical features of the velocity potential
in a continuous, simply connected and non-convex fluid domain including the interaction between the fluid and the
internal body. The possibility of testing and analyzing different sizes of system variables that affect the dynamic
characteristics of the partially submerged cylindrical shell may be considered as an advantage of the present method. It
should also be noted that using the analytical method proposed in the present paper allows a fast and reliable solution to
the problem for large container radius, a, when compared with some numerical solutions, e.g., finite element method. It is
in agreement with the conclusion mentioned by Amabili [18] ‘‘An unbounded fluid domain, such as the one studied, can be
simulated with difficulty by standard finite element programs. In contrast, the Rayleigh–Ritz method, employed in the
present study, allows a first and reliable solution to the problem to be obtained.’’

In order to evaluate the dynamic characteristics of the coupled system, the effects of submergence depth, axial and
radial distances between the cylindrical shell and the cylindrical container, and the circumferential wavenumber n on the
natural frequencies and mode shapes of the coupled system were investigated. It was found that by increasing the
submergence depth, the natural frequencies of the submerged shell decrease. It was also obtained that an increase of axial
distance between the shell and the container produces an increase of the natural frequencies. The natural frequencies of
the submerged shell increase with increasing radial distance between the shell and the container. The effect of
submergence depth, axial and radial distance between the shell and the container on the coupled system varies with axial
half-wave and circumferential wavenumbers (m, n), i.e., this effect was stronger for modes with smaller axial half-wave
and circumferential wavenumbers.

The developed analytical method was verified by FEM results, the results of which show excellent agreement. This method
can be extended to the fluid–structure interaction problems involving different shapes of the flexible internal body.
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